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Figure: A P2P network

e Highlights:

Highly scalable
Asynchronous
Completely decentralized
Ad-hoc connections
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Figure: A P2P network

e Highlights:

Highly scalable

e Asynchronous

e Completely decentralized
e Ad-hoc connections

Data mining in P2P networks?
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P2P setup

e Millions of peers (Skype ~ 50 million)

e Dynamic topology and data — peers can join/leave at any time
e No global clock — completely asynchronous

e Same features across all peers

e Communication — reliable, bandwidth-limited, asynchronous,
asymmetric
e Impracticalities / impossibilities
e global communication
e global synchronization
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An example

Figure: Centralized vs. in-network computation
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o EM very useful for variety of data mining tasks

e Can

be deployed in P2P networks for

clustering
anomaly detection
target tracking
inferencing

e Centralizing data expensive/impractical; collaborative computing e.g.
cloud computing can harness power of multiple processors/storage
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e Centralizing data expensive/impractical; collaborative computing e.g.
cloud computing can harness power of multiple processors/storage

P2P EM

Can we develop an EM algorithm for P2P networks?‘

Motivation
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Problem statement

e Consider large P2P network

each node has local data which change over time
each node can exchange messages with immediate neighbors

Fit and monitor a gaussian mixture model (gmm) via EM to global data

e Constraints:

P2P EM

communication-efficient and scalable

asynchronous

able to handle dynamic data and network

provably correct result compared to centralized computation
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Contribution

e Algorithm for monitoring gmm parameters using EM in large P2P
networks
e Jocal and highly scalable
e asynchronous
e provably correct
e seamlessly handles changes in the data and network
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What is locality?

e Every node communicates with
only fixed number of other
nodes

e Bounded total query size
e Advantages:

e Scalable
e Fault-tolerant Figure: Locality of distributed algorithms

e Robust
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What is locality?

e Every node communicates with
only fixed number of other
nodes

e Bounded total query size
e Advantages:

e Scalable
e Fault-tolerant Figure: Locality of distributed algorithms

e Robust

Local algorithms

For data dependent algorithms, there exist problem instances whose
resource consumption is constant, independent of network size
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Expectation maximization
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Expectation maximization
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Expectation maximization
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Figure: Expectation Maximization

e Given X = {x_f,x_}z, ,>T,,>} where X! :N(ﬁ Cs)
e Goal: estimate parameters © = {;T{, .7ILT/<>,C1, co s Cpy T, e TR}

e Approach: maximize log-likelihood of parameters given X
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Expectation maximization

Update equations

E-step (estimate the contribution of each point towards each gaussian):
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M-step (recompute the parameters of each gaussian):
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e Pq,..., Py — aset of peers
e Data stream at P;
— —
Si = [Xii, X5y Xi,m)
e Global input G = U S;
i=1,....p
e X;: messages sent by P; to P;
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Notations

e Pq,..., Py — aset of peers

Data stream at P;

Si=[Xid X3 Xim)

Global input G = U S;
i=1,....p
e X;: messages sent by P; to P;

Build and monitor gmm model on G without collecting G

Background» Notations



Thresholding problem

e Problem 1: Compute gmm parameters
e O(n) communication for exact computation x

e Problem 2: Given pre-computed parameters, monitoring them vs. G
o Less than O(n) communication...very efficient v/
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Thresholding problem

e Problem 1: Compute gmm parameters
e O(n) communication for exact computation x

e Problem 2: Given pre-computed parameters, monitoring them vs. G
o Less than O(n) communication...very efficient v/

e Sufficient statistics

e Knowledge:
Ki=S5i U X;.i

Pier;

e Agreement:

Aij=XijUXi
e Withheld: Figure: Set statistics
Wij=Ki\ Ai
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Geometric interpretation

Conflicting objectives:
e For correct computation, K; =G

e For communication efficient solution, K; # G
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Geometric interpretation

Conflicting objectives:
e For correct computation, K; =G

e For communication efficient solution, K; # G

Decompose domain into several non-overlapping convex regions such
that any function computed on G remains invariant inside each
convex region

Even if K; # G, F(K;) = F(G) inside any such region
e Example: Is ||G]| < €?
Still nobody knows G...
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Local criterion

e Need conditions on local set statistics to infer about G

For each peer and each of its neighbors, if all its set statistics K;, A; j,
Wi j are in same convex region, then so is G

Figure: An example
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Local criterion

Allows a peer to terminate computation and communication whenever
stopping condition is satisfied irrespective of other conditions

Still guarantees eventual correctness

Remarkably efficient in pruning messages

Allows a peer to sit idle until an event occurs:
e send or receive message
e change in local data
e change in immediate neighborhood

P2P EM algorithm



Back to EM

Monitoring algorithm:
@ Input: local dataset, precomputed parameters, error threshold €
@® Goal: monitor L(©), T, ﬁ C
@ Initialization e
b 5i = {qi,s,a ()?I,—; - ﬁs)}
e Compute sufficient statistics vectors
e Define convex regions

\Llhing'_, Event detection

Figure: Flowchart of algorithm
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Computing EM models

e Monitoring algorithm raises an alarm on correct detection
e For closed-loop solution, sample data, rebuild model

e Non-local solution — correctness of monitoring algorithm minimizes
false dismissals and false alarms

/

.’. ® ©

Figure: Convergecast
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Monitoring results

e Simulated data consists of multivariate correlated gaussians with
arbitrary parameters

o Parameters changed at fixed simulator intervals
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Figure: Experimental results in monitoring mode
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Closed loop results
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Figure: Experimental results in closed loop mode
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Scalability results

=
o
o

Figure: Scalability results
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Conclusion

e First work on developing a local algorithm for gmm monitoring

e Algorithm provably correct, communication efficient, highly scalable,
in-network and asynchronous

e Extensive experimental results show low communication cost and
correctness of results

Resources:
e http://ti.arc.nasa.gov/profile/kbhaduri/

e Distributed Data Mining Bibliography:
http://wuw.csee.umbc.edu/~hillol/DDMBIB/
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